
DATABASE MANAGEMENT SYSTEM AND
INFORMATION RETRIVAL

 B.KiranKumar S.Durga Prasad, P M Manohar, KVVS SatyaPrakash, M.Chiranjeevi, K.Venkat Kiran

Abstract- A database management system (DBMS) is a
software package with computer programs that control the
creation, maintenance, and use of a database. It allows
organizations to conveniently develop databases for various
applications by database administrators (DBAs) and other
specialists. Information retrieval emerged as independent
research area from traditional database management system
more than a decade ago. This was driven by the increasing
functional requirements that modern full text search engines
have to meet. Current database management systems (DBMS)
are not capable of supporting such flexibility. However, with
the increase of data to be indexed and retrieved and the
increasing heavy workloads, modern search engines suffer
from Scalability, reliability, distribution and performance
problems. We present a new and simple way for integration
and compare the performance of our system to the current
implementations based on storing the full text index directly
on the file system.

Keywords: Full text search engines, DBMS IRS,
Lucen, performance evaluation, DBMIRS,
scalability.

INTRODUCTION:
New applications like office information systems need
interfaces to data bases which integrate classical data
manipulation with management and retrieval of textual
(“unformatted”) data. The relational data model is widely
accepted as a high level interface to classical (“formatted”) data
management. It turns out, however, to be inconvenient for
handling even simple data structures as commonly used in
information retrieval systems. To attack this shortcoming we
propose an extension of the relational model by allowing Non
First Normal Form (NF2) relations. We summarize extensions
of the relational algebra, with main emphasis on the new “nest”
and “unnest” operations which transform between first normal
form relations and the NF2 ones. In the past, database
management systems (DBMS) and information retrieval
systems (IRS) were separated in research and development and
different products have been developed for either purpose. At
present there is a trend towards a single integrated system for
data base management and information retrieval called
DBMIRS -because of the following reasons: Many applications
need a DBMIRS. Examples are patients’ data within hospital
information Systems, laboratory document administration

 Pharmaceutical data bases, and library Information systems,
and with growing awareness office information systems. A
characteristically feature of these applications is the fact that it
is necessary to combine text management and retrieval with
usual formatted data manipulation. Therefore a single user
interface is necessary. Most commercial database management
systems offer basic phonetic full text search functionality. For
example, Oracle has a module called Oracle Text [1]. Yet,
seeking to add more functionality and intelligence to their
search capabilities, many commercial applications use third
party specialized full text search engines instead. There are
several commercial products on the market. But certainly
Lucene [2] is the most popular open-source product at the
moment. It provides searching capabilities for the Eclipse IDE
[3], the Encyclopedia Britannica CD-ROM/DVD, FedEx, New
Scientist magazine, Epiphany, MIT’s Open-Courseware [4] and
so on. All search engines build an index of the data to be
retrieved in user queries. The index is always stored in the file
system on disk and can be loaded at startup in the memory
(optional in Lucene) for faster querying. However, this is not
feasible for large indices due to memory size limitations. So,
the standard storage usually remains the file system of the
disk.. Reliability becomes also a problem. The possibility of
corrupting the whole index during a system crash is much
higher than losing the data in a database after a similar crash.
Restoring a defected index might also take several hours thus
complicating the situation even further. The search engine must
manage its read and write locks by itself as well. Distributing
the index among several sites and providing efficient mirror-
ing techniques is becoming an important issue to large scale
search engine projects such as Nutch [5].We propose using
current DBMS as backend to existing full text search engines
as opposed to either reimplementing full text search engine
functionality into DBMS or re-implementing core DBMS
features into search engines. As a case study, we use the
open-source Lucene and MySQL without loss of generality. We
use real world data extracted from an electronic marketplace
and simulate real world workload traces in order to
demonstrate that the overall system throughput and query
response time do not suffer with the introduction of DBMS as
a backend with their inherent overhead. spectrum of basic
infrastructural facilities offered by DBMS The rest of the
paper is organized as follows.

B.KiranKumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3632-3637

3632

mailto:***smilesofmanohar@gmail.com�
mailto:satyaprakash@gvpce.ac.in�
http://en.wikipedia.org/wiki/Computer_program�
http://en.wikipedia.org/wiki/Database�
http://en.wikipedia.org/wiki/Database_administrator�

Section 2 provides a background on full text search engines.
Our proposed system integration is presented in Section 3.
Section 4 contains the results of our performance evaluation
and Section 5 concludes the paper.

2 BACKGROUND ON FULL TEXT SEARCH

ENGINES

2.1 Typical Features
Full text search engines do not care about the source of
the data or its format as long as it is con- verted to plain
text. Text is logically grouped into a set of documents.
The user application constructs the user query which is
submitted to the search engine. The result of the query
execution is a list of document IDs which satisfy the
predicate described in the query. The results are usually
sorted according to an internal scoring mechanism using
fuzzy query processing techniques [6]. The score is an
indication of the relevance of the document which can be
affected by many factors. The phonetic difference
between the search term and the hit is one of the most
important factors. Some fields are boosted so that hits
within these fields are more relevant to the search result as
hits in other fields. Also, the dis- tance between query
terms found in a document can play a role in
determining its relevance. E.g., searching for “John
Smith”, a document containing “John Smith” has a higher
score than a document containing “John” at its beginning
and “Smith” at its end. Furthermore, search terms can be
easily augmented by searches with synonyms. E.g.,
searching for “car” retrieves documents with the term
“vehicle” or “automobile” as well. This opens the door for
ontological searches and other seman- tically richer
similarity searches.

2.2 Architecture

As illustrated in Fig. 1, at the heart of a search
engine resides an index. An index is highly efficient cross-
reference l o o k u p d a t a structure. In most search
engines, a variation of the well-known in- verted index
structure is used [7]. An inverted index is an inside-out
arrangement of documents such that terms take center stage.
Each term refers to a set of documents. Usually, a B+-tree is
used to speed up traversing the index structure.

The indexing process begins with collecting the available
set of documents by the data gatherer. The parser converts
them to a stream of plain text. For each document format, a
parser has to be implemented. In the analysis phase, the
stream of data is tokenized according to predefined delimiters
and a number of operations are performed on the tokens. For
example, the tokens could be lowercased before indexing. It is
also desirable to remove all stop words. Additionally, it is
common to reduce them to their roots to enable phonetic

and grammatical similarity searches.
The search process begins with parsing the user query. The
tokens and the Boolean operators are extracted. The tokens
have to be analyzed by the same analyzer used for indexing.
Then, the index is traversed for possible matches in order to
return an ordered collection of hits. The fuzzy query processor
is responsible for defining the match cri- teria during the
traversal and the score of the hit.

Figure 1: Architecture of a full text search engine

2.3 Typical Operations

2.3.1 Complete index creation
This operation occurs usually once. The whole set of

documents is parsed and analyzed in order to create the index
from scratch. This operation can take several hours to
complete.

2.3.2 Full text search
This operation includes processing the query and

returning page hits as a list of document IDs sorted according
to their relevance.

2.3.3 Index update
This operation is also called incremental index- ing. It is

not supported by all search engines. Typi- cally, a worker
thread of the application monitors the actual inventory of
documents. In case of doc- ument insertion, update, or
deletion, the index is changed on the spot and its content is
immediately made searchable. Lucene supports this operation.

3 PROPOSED SYSTEM INTEGRATION

3.1 Architecture

Lucene divides its index into several segments.
The data in each segment is spread across several files. Each

B.KiranKumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3632-3637

3633

index file carries a certain type of infor- mation. The exact
number of files that constitute a Lucene index and the exact
number of segments vary from one index to another and
depend on the number of fields the index contains. The
internal structure of the index file is public and is platform
independent [8]. This ensures its portability.

We take the index file as our basic building block and
store it in the MySQL database as illu- strated in Fig. 2. The
set of files, i.e. the logical directory, is mapped to one
database relation. Due to the huge variation in file sizes,
we divide each file into multiple chunks of fixed length.
Each chunk is stored in a separate tuple in the relation. This
leads to better performance than storing the whole file as
CLOB in the database. The primary key of the tuple is the
filename and the chunk id. Other normal file attributes
such as its size and timestamp of last change are stored in
the tuple next to the content. We provide standard random
file access operations based on the above mentioned
mapping. Using this simple mapping, we do not violate the
public index file format and present a simple yet elegant
way of choosing between the different file storage media
(file system, RAM files, or database).

Figure 2: Integrating Lucene index in MySQL da tabase

3.2 System design

Fig. 3 illustrates the UML class diagram of the store package
of Lucene. We only include the relevant classes. The newly
introduced classes are grayed. Directory is an abstract class
that acts as a container for the index files. Lucene comes
with two implementations for file system directory
(FSDirectory) and in-RAM index (RAM Directory). It provides
the declaration of all basic file operations such as listing all file
names, checking the existence of a file, returning its length,
changing its timestamp, etc. It is also responsible for opening

files by returning an Input Stream object and creating a new
file by returning a reference to a new instance of the Output
Stream class. We provide a database specific
implementation, DBDirectory, which maps these operations
to SQL operations on the database.

Both I n p u t S t r e a m and O u t p u t S t r e a m are
abstract classes that mimic the functionality of their java.io
counterparts. Basically, they implement the
transformation of the file contents into a stream of basic
data types, such as integer, long, byte, etc., according to the
file standardized internal format [8]. Actual reading and
writing from the file buffer remain as abstract method to
decouple the classes from their physical storing mechanism.
Similar to F S I n p u t S t r ea m and RAMI npu tStream,
we provide the database dependent implementation of the
read Internal and seekInternal methods. Moreover, the
DBOutputStream provides the database specific
flushing of the file buffer after the different write
operations. Other buffer management operations are also
implemented.

Both DBInputStream and DBOutput Stream
use the central class DBFile. A DBFile object provides
access to the correct file chunk stored in a separate tuple in
the database. It also provides a clever caching mechanism
for keeping recently used file chunks in memory. The size of
the cache is dynamically adjusted to make use of the
available free memory of the system. The class is
responsible for guaranteeing the coherency of the cache.

Figure 3: UML class diagram of the store package after
modification.

4. PERFORMANCE EVALUATION

In our order to evaluate the performance of our proposed

B.KiranKumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3632-3637

3634

system, we build a full text search engine on the data of a
neutralized version of a real elec- tronic marketplace. The
index is build over the tex- tual description of more than one
million products. Each product contains approximately 25
attributes varying from few characters to more than 1300 cha-
racters each. We develop a performance evaluation toolkit
around the search engine as illustrated in Fig.4.The workload
generator composes queries of single terms, which are
randomly extracted from the product description. It submits
them in parallel to the application. The product update
simulator mimics product changes and submits the new con-
tent to the application in order to update the Lucene index.
The application consists of the modified Lucene kernel
supporting both file system and database storage options of
the full text index. The application under test manages two
pools of worker threads. The first pool consists of searcher
threads that process the search queries coming from the
workload generator. The second pool consists of index
updater threads that process the updated con- tent coming
from the product update simulator. The performance of the
system is monitored using the performance monitor unit.

Figure 4: Components of the performance evalua- tion toolkit.

4.1 Input Parameters and Performance Me trics
We choose the maximum number of fetched

hits to be 20 documents. This is a reasonable assumption
taking into consideration that no more than 20 hits are
usually displayed on a web page. The number of search
threads is varied from 1 to 25 enabling the concurrent
processing of 25 search queries. Due locking restrictions
inherent in Lucene, we restrict our experiments to maximum
one index update thread. We also introduce a think time vary-
ing from 20 to 100 milliseconds between successive index
update requests to simulate the format specifyic parsing of the
updated products.

In all our experiments, we monitor the overall system

throughput in terms of conducted:
• Searches per second, and
• Index updates per second.

We also monitor the response time of:
• the searches, and
• the index updates

from the moment of submitting the request till receiving the
result.

4.2 System Configuration

In our experiments we use a dual core Intel
Pentium 3.4 GHz processor, 2 GB RAM 667 MHz and one
hard disk having 7200 RPM, access time of 13.2 ms, seek
time of 8.9 ms and latency of 4 ms. the operating system is
Windows XP. We use JDK 1.4.2, MySQL version 5.0, JDBC
mysql- connector version 3.1.12, and Lucene version 1.4.3.

4.3 Experiment Results

The performance evaluation considers the main
Operations: complete index creation, simultaneous full text
search over single terms under various workloads, and - in
parallel - performing index up- date as product data change.
The experiments are conducted for the file system index and
the data- base index. We drop the RAM directory from our
consideration, since the index under investigation is too large
to fit into the 1.5 GB heap size provided by Java under
Windows.

4.3.1 Complete index creation
Building the complete index from scratch on the file

system takes about 28 minutes. We find that the best way to
create the complete index for the database is to first create a
working copy on the file system and then to migrate the index
from the file system to the database using a small utility that
we developed to migrate the index from one storage to the
other. This migration takes 3 minutes 19 seconds to
complete. Thus, the overhead in this one time operation is less
than 12%.

4.3.2 Full text search
In this set of experiments, we vary the number of search

threads from 1 to 25 concurrent worker threads and compare
the system throughput, illu- strated in Fig. 5, and the query
response time, illu- strated in Fig. 6, for both index storage
techniques.

We find that the performance indices are en- hanced by a
factor > 2. The search throughput jumps from round
1,250,000 searches per hour to almost 3,000,000 searches per
hour in our proposed system. The query response time is
lowered by 40% by decreasing from 0.8 second to 0.6 second
in average. This is a very important result because it means
that we increase the performance and take the robustness and
scalability advantages of database management systems on top

B.KiranKumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3632-3637

3635

in our proposed system.

Figure 5: Search throughput in an update free environment.

Figure 6: Search response time in an update free
environment.
5 CONCLUSION AND FUTURE WORK

In this paper, we attempt to bring information retrieval

back to database management systems. We propose using
commercial DBMS as backend to existing full text search
engines. Achieving this, today’s search engines directly
gain more robustness, scalability, distribution and
replication features provided by DBMS.

In our case study, we provide a simple system
integration of Lucene and MySQL without loss of
generality. We build a performance evaluation toolkit and
conduct several experiments on real data of an electronic
marketplace. The results show that we reach comparable
system throughout and response times of typical full text
search engine operations to the current implementation,
which stores the index directly in the file system on the
disk. In several cases, we even reach much better results
which mean that we take the robustness and scalability of
DBMS on top. Yet, this is only the beginning. We plan on
mapping the whole internal index structure into database
logical schema instead of just taking the file chunk as the
smallest building block. This will solve the restrictive

locking problem inherent in Lucene and will definitely
boost overall performance. We also plan on extending our
performance evaluation toolkit to work on several sites of a
distributed database.

ACKNOWLEDGMENT

Thanks to Management of WellFare Group of Companies and to
the Chairman Mrs.M.Aruna Kumari of WellFare College of
Science Technology & Management

REFERENCES

[1] Oracle Text. An Oracle Technical White Paper,

http://www.oracle.com/technology/products/text
/pdf/10gR2text_twp_f.pdf. (2005).

[2] Apache Lucene,

http://lucene.apache.org/java/docs/index.html.

[3] B. Hermann, C. Muller, T. Schafer, and M. Me- zini:

Search Browser: An efficient index based search feature for
the Eclipse IDE, Eclipse Technology exchange workshop
(eTX) at ECOOP (2006).

[4] MIT Open Courseware, MIT Reports to the

President (2003–2004).

[5] Nutch home page,

http://lucene.apache.org/nutch/

[6] D. Cutting, J. Pedersen: Space Optimizations for

Total Ranking, Proceedings of RIAO (1997).

[7] D. Cutting, J. Pedersen: Optimizations for Dynamic

Inverted Index Maintenance, Proceedings of SIGIR (1990).

[8] Apache Lucene - Index File Formats,

http://lucene.apache.org/java/docs/fileformats.ht ml.

B.KiranKumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3632-3637

3636

http://www.oracle.com/technology/products/text�
http://www.oracle.com/technology/products/text�
http://www.oracle.com/technology/products/text�
http://lucene.apache.org/java/docs/index.html�
http://lucene.apache.org/java/docs/index.html�
http://lucene.apache.org/java/docs/index.html�
http://lucene.apache.org/nutch/�
http://lucene.apache.org/nutch/�
http://lucene.apache.org/nutch/�
http://lucene.apache.org/java/docs/fileformats.ht�
http://lucene.apache.org/java/docs/fileformats.ht�
http://lucene.apache.org/java/docs/fileformats.ht�

About Authors

Mr. DurgaPrasad working as Associate Professor and Head of
the Dept of Computer Science & Engg in Baba Institute of
technology And Sciences, Vishakapatnam.He has 12 years of
good teaching experiences. He completed his Master Degree in
computer Science & Engg from Andhra University.

Mr. M Manohar working as Assistant Professor in the Dept of
Computer Science & Engg in Baba Institute of technology And
Sciences, Vishakapatnam.He has 6 years of good teaching
experiences. He completed his Master Degree in computer
Science & Engg from Andhra University.

Mr. K.V.S Satya Prakash Assistant Professor, Dept of
Information Technology, in Gayatri Vidhya Parshid College of
Engineering (Autonomous), Madhurawada, Vishakhapatnam.
He has 2 years of good teaching experiences. He completed his
Master Degree in computer Science & Engg from Gitam
University.

Mr.B.kiran Kumar working as an Assistant Professor in
WellFare college of Science, Technology & Management
Visakhapatnam. He completed his Master Degree in Information
Technology from Gitam University. He has 3 years good
teaching experience and having a good knowledge on
Information Security.

Mr.K.VenkatKiran working as an Assistant Professor in
WellFare college of Science, Technology & Management
Visakhapatnam. He completed his Master Degree in computer
Science & Technology from JNT University. He has 5 years
good teaching experience and having a good knowledge on
computer subjects.

Mr.M.Chiranjeevi working as an Assistant Professor in
Simhadari college of Engg, kovvuru-post Visakhapatnam. He
completed his Master Degree in computer Science &
Technology from BU University. He has 5 years good teaching
experience and having a good knowledge on computer subjects.

B.KiranKumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3632-3637

3637

